Coupling of surface energy with electric potential makes superhydrophobic surfaces corrosion-resistant.
نویسندگان
چکیده
We study the correlation of wetting properties and corrosion rates on hydrophobized cast iron. Samples of different surface roughnesses (abraded by sandpaper) are studied without coating and with two types of hydrophobic coatings (stearic acid and a liquid repelling spray). The contact angles and contact angle hysteresis are measured using a goniometer while corrosion rates are measured by a potentiodynamic polarization test. The data show a decrease in corrosion current density and an increase in corrosion potential after superhydrophobization. A similar trend is also found in the recent literature data. We conclude that a decrease in the corrosion rate can be attributed to the changing open circuit potential of a coated surface and increased surface area making the non-homogeneous (Cassie-Baxter) state possible. We interpret these results in light of the idea that the inherent surface energy is coupled with the electric potential in accordance with the Lippmann law of electrowetting and Le Châtelier's principle and, therefore, hydrophobization leads to a decrease in the corrosion potential. This approach can be used for novel anti-corrosive coatings.
منابع مشابه
Robust superhydrophobic surface on Al substrate with durability, corrosion resistance and ice-phobicity
Practical application of superhydrophobic surfaces is limited by the fragility of nanoscale asperities. Combining chemical etching and anodization, microscale pits and nanoscale pores, instead of the micro and nano protrusions on traditional superhydrophobic surfaces mimicking Lutos leaves, were fabricated on commercially pure aluminum surfaces. After modified by FDTS, the surfaces were superhy...
متن کاملFabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process
The formation of low surface energy hybrid organic-inorganic micro-nanostructured zinc stearate electrodeposit transformed the anodic aluminum oxide (AAO) surface to superhydrophobic, having a water contact angle of 160 ̋. The corrosion current densities of the anodized and aluminum alloy surfaces are found to be 200 and 400 nA/cm2, respectively. In comparison, superhydrophobic anodic aluminum o...
متن کاملToward a durable superhydrophobic aluminum surface by etching and ZnO nanoparticle deposition.
Fabrication of suitable roughness is a fundamental step for acquiring superhydrophobic surfaces. For this purpose, a deposition of ZnO nanoparticles on Al surface was carried out by simple immersion and ultrasound approaches. Then, surface energy reduction was performed using stearic acid (STA) ethanol solution for both methods. The results demonstrated that ultrasound would lead to more stable...
متن کاملElectric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the v...
متن کاملApplications of Plasma Technology in Development of Superhydrophobic Surfaces: A Review
Superhydrophobic surfaces, originally inspired by nature, have gained a lot of interest in the past few decades. Superhydrophobicity is a term attributed to the low adhesion of water droplets on a surface, leading to water contact angles higher than 150◦. Due to their vast variety of possible applications, ranging from biotechnology and textile industry to power network management and anti-foul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 38 شماره
صفحات -
تاریخ انتشار 2015